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Intermediate spin and certain small magnets

S E Barnes
Department of Physics, University of Miami, Coral Gables, Florida 33124, USA
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Abstract. An isolated spinS can have only whole or half-integer values. It is shown that under
certain circumstances a system composed of such spins can have low-lying excitations which
correspond to a different value of the spinSeff which is intermediate between these standard
possibilities. A general demonstration valid in any dimension is given followed by a detailed
examination of the simplest, zero-dimensional example, namely a small easy plane ferromagnet.
Some experimental implications are worked out.

Reflecting the effect of the so-calledtopological term(see, e.g., Fradkin 1991), Haldane
(1985) has conjectured that one-dimensional quantum field theories based on half and whole
integer spins differ in a significant fashion, i.e., the latter have a gap in the low-energy
spectrum while the former do not. A similar effect, reflecting a topological term, occurs for
small zero-dimensional magnets. Losset al (1992) and von Delft and Henley (1992) have
shown that the amplitude for tunnelling with a complete reversal of the magnetization of a
small ferromagnet is strictly null for half-integer spin in situations where it is finite for a
similar system with integer spin. Garg (1993) has shown, for a small easy axis ferromagnet
with a field perpendicular to the direction of the magnetization, this same amplitude oscillates
as a function of field.

Every elementary quantum mechanics text offers a proof that only half and whole
integer spin values are allowed. It is interesting to investigate the simplest situations when
this standard result can be called into questionfor low-lying excitations. The point of
the exercise is not to challenge the authenticity of the basic theorem, any more than the
demonstration of the possible existence of anyons in condensed matter systems is intended
to disprove that such a system is ultimately composed of bosons and fermions. The goal is
to show that the low-lying excitations reflect the physics of a spinSeff which has a value
which is intermediate between a whole and half-integer. It remains the case that the system
is constructed from spins with a whole or half-integer value of the spinS.

Consider the following Hamiltonian describing such whole or half-integer spins:

H(H) = gµBH
∑
n

Snz +K‖
∑
n

S2
nz +H1(Sn) (1)

whereH1 is a fairly general (scalar) function of theSn andn is some real space site index.
The key assumptions are thatS and the positive anisotropy energyK‖ are sufficiently large
thatS2K‖ � gµBH , 〈H1〉, and thatS is not too small. (The classical limit isnot assumed,
e.g.,S = 2 or 3 will exhibit the predicted phenomena.) The expectation values are for the
low-lying states of interest. This inequality forces the spins to lie close to thex–y plane,
i.e., the relevant states are constructed from eigenstates ofSz such that|Sz| � S. When
this is the case the matrix elements ofS± areS, or equivalently [S+, S−] = 0, to a good
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approximation. Then to within an additive constant, the magnetic fieldH can be absorbed
into the anisotropy energy by the substitution

Ŝz → Ŝz − a a = gµBH

2K‖
(2)

and the new spin operator̂Sz − a obeys the approximate spin commutation rules. This
observation suffices to prove thatH(H) is equivalent toH(H = 0) if for the latter the
spectrum of allowed values ofSz are

n− gµBH
2K‖

(3)

wheren is a whole or half-integer. In general this spectrum doesnot correspond to either
whole or half-integer spin.

In fact, in all respects the problem in finite field,H(H), is equivalent to that in zero field,
H(H = 0), but with a value of the total spinSeff = S − (gµBH/2K‖) which differs from
the whole or half-integer valueS of the constituting particles by the quantitygµBH/2K‖.
The resulting effective spin value is neither whole or half-integer unlessgµBH/2K‖ is
either a whole or half-integer. Thus the HamiltonianH(H) is equivalent to a problem
with intermediate spin which isperiodic with a field periodHp = (2K‖/gµB). A field of
H1/2 = K‖/gµB converts the half-integer problem into the whole integer equivalent and
vice versa.

Since the Hamiltonian (1), for one dimension, lies in the class of models believed to be
covered by Haldane’s conjecture, it is implied that as a function of applied field parallel to
the hard axis there will be periodic half-integer ‘phases’, without a gap, with whole-integer
gapped ‘phases’ between. Also since there are no phase transitions as a function of such an
applied field, the tunnelling amplitude for a complete reversal of spin in zero dimensions
must be periodic with a zero amplitude occurring at points on the field axis. In addition,
the present demonstration is valid for arbitrary dimensions and implies an applied field
periodicity in the properties of a whole class of Hamiltonians.

These predicted oscillationshavebeen observed by Taftet al (1994), in the quasi-zero-
dimensional antiferromagnet Fe10, although the interpretation offered by those authors is
different.

In the following, this general result will be investigated for the simplest example, namely
a small easy axis ferromagnet. Such a zero-dimensional ferromagnet can be modelled
by a single large spin subject to the external and anisotropy fields, i.e., the Hamiltonian
H = gµBS · H + K‖Sz2 + K⊥Sx2 where without loss of generality it is assumed that
|K‖| > |K⊥| (see, e.g., Chudnovsky 1995).

Experimentally it is important to observe that the energy parametersK‖, K⊥ all scale
as S−1. The equivalent physical quantities aregµBH‖ = K‖/S, and gµBH⊥ = K⊥/S.
Thus a field ofH = H‖/S transforms the integer easy axis ferromagnet into the half-integer
equivalent and vice versa.

The detailed formulation is in terms of auxiliary particles (see Barneset al 1997). A
basis|Sz〉 ≡ |n〉 is chosen, and an auxiliary particle, a fermionfn, is associated with each
state via the mapping|n〉 → f

†
n |〉 where|〉 is a non-physical vacuum without any auxiliary

particles. Define a bi-quadratic version of an operatorÔ via: Ô → ∑
n,n′ f

†
n 〈n|Ô|n′〉fn′ .

The constraintQ = ∑
n n̂n =

∑
n f
†
n fn = 1 holds. It has been shown (see, e.g., Barnes

1981) that such schemes preserve all operator multiplication rules including commutation.
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With h = gµBH , the replacement rule is applied toH to yield:

H =
∑
n

(
K‖n2− nh+ 1

4K⊥[(Mn+1
n )2+ (Mn−1

n )2]
)
f †n fn

+ 1
4K⊥

∑
n

Mn+1
n Mn+2

n+1(f
†
n+2fn + H.C.) (4)

where theMn+1
n = [S(S + 1)− n(n+ 1)]1/2 are the matrix elements ofS±. This represents

two tight binding models of spinless fermionsf †n . The constraintQ = 1 implies this is a
single-particle problem.

The ‘two-chain’ structure reflects the fact that the ‘hopping’ term in (4) couples ‘sites’
with indices which differ by two, resulting in distinct even and odd site chains. The present
formulation and the resulting chains are a convenient method to reflect the underlying
structure of the characteristic determinant. As noted by a number of authors, this structure
implies immediately a spin-parity effect found by Losset al (1992) and von Delft and
Henley (1992). For integer spin, the two chains comprise the sites

n = −S,−(S − 2),−(S − 3), . . . , (S − 3), (S − 2), S

and

n = −(S − 1),−(S − 3),−(S − 5), . . . , (S − 5), (S − 3), (S − 1)

which for h = 0 are both symmetric relative ton = 0. On the other hand for half-integer
spin the chains are

n = −S,−(S − 2),−(S − 3), . . . , (S − 5), (S − 3), (S − 1)

and

n = −(S − 1),−(S − 3),−(S − 5), . . . , (S − 3), (S − 2), S

which for h = 0 are equivalent to each other through the mapn→−n but which lack the
symmetry aboutn = 0. Because of the equivalence of the two chains there must always
be a double (Kramers’) degenerate ground state, without a tunnel splitting, for half-integer
spin andh = 0, while, because of symmetry aboutn = 0, tunnel split pairs for integer spin
can exist.

To see how a whole integer spin is converted into a half-integer equivalent, consider first
the fixed pointdefined byK⊥ → 0. All off-diagonal matrix elements are zero, the diagonal
energies areK‖n2 − hn, and for aninteger spin easy plane ferromagnet, i.e., withK‖ > 0,
and in zero field (h = 0), the ground state lies on the siten = 0, and therefore on the even
site chain. The first excited states, at an energyK‖, are located on the sitesn = ±1 and
correspond to the odd site chain. For a similar system but ofhalf-integer spinthe two chains
are fully equivalent and there are two grounds states. One chain contains the ground state
at n = +1/2 and the other atn = −1/2 and all excited states, corresponding to the sites
n = ±3/2, n = ±5/2, etc, also occur in pairs. Now consider the situation whenh = K‖
and first whole integer spin. The pairs of statesn = 0,+1, n = −1,+2, etc, are degenerate
and might be mapped onto the states±1/2, ±3/2, etc, of the half-integer system inzero
field. Similarly, for half-integer spin and the same field, the energy of the siten = +1/2 is
K‖ lower than that withn = −1/2 and this latter is now degenerate withn = +3/2, so the
non-degenerate ground state is on the chain which contains the siten = +1/2 with the first
excited states on the other chain which contains the pairn = −1/2,+3/2, thus mimicking
the whole-integer spin chain in zero field. In fact for whole integer spin there is a level
crossing whenever

h = (2n+ 1)K‖ n = 0, 1, 2, 3 . . . (5)
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and at such points all the ground state and low-lying excited states are identical to those of
the half-integer chain in zero field, and, evidently, these same fields transform a half-integer
chain into its integer twin. Other fields correspond to intermediate spin values.

These crossings have period 2K‖, and with this period the splitting between the ground
state and the first excited state undergoes triangular oscillations with amplitude∼ K‖ and,
with each level crossing, the ground state passes from one chain to the other. Since physical
qualities are analytic inK⊥, this fixed point will govern the behaviour for all values of
this parameter. This is verified by both numerical calculations and by the analytic results
described below.

The vicinity of the fixed point with

S2K⊥ < K‖ (6)

defines thesmall particle limit. In the large spin limit all smalln states undergo a
constant shift ofS2K⊥/2, otherwise the corrections to the ground state|n = 0〉 are
perturbative, however the excited states split. Ignoring the constant shift, these are
(1/
√

2)[|1〉± |−1〉] with energiesK‖ ±S2K⊥/4. Theh = 0 ground to lowest exicted state
splitting K‖ − S2|K⊥|/4 determines the amplitude of the near triangular oscillations. This
splitting has nothing to do with tunnelling. However the ground state is clearly ‘coherent’,
e.g.,〈S〉 = 0, i.e., the order parameter is not localized in a particular direction in thex–y
plane.

Generally Schr̈odinger’s equation

(ε − (K‖n2− nh))an = 1
4K⊥

[
Mn+1
n Mn+2

n+1an+2+Mn−1
n Mn−2

n−1an−2

−[(Mn+1
n )2+ (Mn−1

n )2]an
]

(7)

involves finite differences, where the wavefunction9 = ∑
n(−)n/2anf †n |〉. When the

inequality S2K⊥ < K‖ is reversed the particle islarge, and assumingK⊥ < 0, an varies
slowly as a function of the discreten. However the wavefunctionremains well localized
near n ∼ 0, so the matrix elementsMn+1

n can be replaced byS and for low-lying states the
wavefunction does not ‘see’ the chain ends.

That the low-lying states are insensitive to the boundary conditions is the physical
reason why intermediate spin values are possible and even physically necessary. In the
standard proof where the spin must take whole or half-integer spin values it is precisely
the insistence that, in the present language, the chains must terminate which limits the spin
to these values. Since the low-lying excitations do not ‘know’ the chains terminate it is
possible to find a parameter, here the applied magnetic field, which determines an arbitrary
effective spin value for these excitations. More precisely, in (7) the magnetic field can be
absorbed, e.g., for even spin, into shifts ofd = h/2K‖ andh2/4K‖ in the origin and the
energy, respectively. In fact to within unimportant energy shifts, it is possible to define a
single problem which accommodatesall values of the field and both whole and half-integer
spin by defining the origin to be at the centre of the harmonic potential and then displacing
the chains byd = h/2K‖ for whole integer, andd = −1/2+ h/2K‖ for half-integer spin.
It is immediately seen that the only difference between whole and half-integer spin is a
discreteshift of 1/2 and that a fully equivalentcontinuousshift is induced by the external
field for small fields. Whole and half-integer spins with a value∼ S correspond to whole
or half-integerd while other values ofd correspond to intermediate spin.

In order to compare this with previous calculations, and for an eventual comparison with
experiment, it is interesting to obtain explicit expressions for the tunnel splitting for this
large particle case. To this end a wavefunction, continuous inn, is defined bya(n+d) = an.
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After a Fourier transformf (y) = 1√
2π

∫
dn einya(n), equation (7) becomes(

E +K‖ ∂
2

∂y2

)
f (y) = −S

2K⊥
2

[cos 2y − 1]f (y) (8)

which is Mathieu’s equation (see Blanch 1964), and whereE = ε−(h2/4K‖). The potential
is periodic with period1y = π and the solutions form bands. (In the relevant limit, this
agrees with Zaslavskii (1990) who uses a different method to reduce the easy plane problem
to that of a particle in a periodic potential. He also considers the field dependence of the
solution but for a different, less interesting direction of the field.) For a given energy, a
solution might be characterized by a wavevectork and Floquet’s (Bloch’s) theorem implies
that solutions are of the formfk(y) = eikyuk(y) whereuk(y) = uk(p+π). That the solution
is finite on the even site chain impliesk = d−2m wherem is a unique integer which reduces
k to the first Brillouin zone{0, 2}. Similarly for the odd site chaink = d + 1− 2m.

Around y = 0, f (y) = (1/
√
β
√
π)e−y

2/2β2
with β2 = S

√
K‖/K⊥, and the nominal

ground state energy is(h2/4K‖)+ (ω0/2); ω0 = 2S
√
K‖K⊥. The band energies are:εk =

(h2/4K‖)+ (ω0/2)+ (w/2) cosπk where the width (Blanch 1964)w = 8
√

2/πω0S
1/2
f e−Sf

and where the actionSf = 2S
√
(K⊥/K‖). For whole integer spin, the result for the ‘tunnel

splitting’, i.e., the difference in energy between the ground and first excited states is

δE = 8

√
2

π
ω0S

1/2
f e−Sf

∣∣∣∣cos

(
π
SH

2H‖

)∣∣∣∣ Sf = 2S
√
(H⊥/H‖). (9)

The order of magnitude and simple cosine dependence of this result have been confirmed
by numerical experiments. (While Garg (1993) has previously shown thatδE oscillates he
gives no explicit expression for the tunnel splitting.) The smooth change in effective spin is
reflected by the factor|cos(π(SH/2H‖))|. For half-integer spin equation (9) again applies
but with the cosine replaced by a sine. These two versions of (9) should be compared with
a similar,h = 0, expression obtained by Losset al (1992) and by von Delft and Henley
(1992). Their result contains instead a factor|cos(πS)|. Here (SH/2H‖) is identified as
the shift from whole or half-integer spin and (9) is seen to be a simple generalization of the
earlier result to the case of intermediate spin.

As an aside, it might be noted that Coleman (1985) has discussed how the Schrödinger
equation (8) is the simplest model which exhibits a so-calledθ -vacuum. In his language,
the vacua localized neary = nπ are connected by instantons. The resulting vacuum is
denoted|θ〉 and has an energy of the formE(θ) = (h̄ω0/2)+2h̄K cosθ e−S0/h̄. The present
problem hastwo such vacua withθ = πk = π(h/2K‖) and θ = π [1 + (h/2K‖)] for the
even and odd site chains, respectively.

From the experimental point of view it is important to inspect the stability of the present
periodic-in-field solution with respect to a misalignment of the field. A magnetic field lying
in the x–y plane couples the two chains. Still, for a larger particle andK⊥ < 0, the
wavefunction,an, for h = 0 is extended, does not alternate in sign between sites, and is
well localized nearn = 0. The operatorsS±, to a good approximation, cause translations
by one lattice site, i.e., they convert the ground state on one chain into that on the other.
The matrix elements ofhxSx = (hx/2)[S+ + S−] are approximatelyhxS/2 while those of
hySy are negligible. Assuming thath is smaller than the splitting,∼ ω0, between the lowest
energy doublet and other excited states, the splitting of the doublet is:

δEh =
√
(δE)2+ (Shx)2.

Evidently the field scale is∼ δE/gµBS and implies that a very careful alignment is required
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in order to observe oscillations. IfK⊥ > 0, an alternates in sign between sites and the role
of the x andy axes are interchanged.

Together, the above results illustrate the phenomenon of intermediate spin. In all cases
there is no difference between integer and half-integer spin except for aπ/2 phase shift
while the applied field can induce an arbitrary shift. With a periodHp = 2H‖/S the physics
changes smoothly from that appropriate to one parity to the other and back again. In this
way, e.g., with a field ofH = H‖/2S a system composed of consituent spinsS = 2 will
exibit at low energies the properties ofSeff = 21

4. However this might also be thought
of as Seff = 13

4 since, to within a change in the sign of definition of they-axis, the two
possibilities give the same spectrum forSz, and the requirement that the spin be nottoo
small implies that|a| = 1/4 be much smaller thanS (or Seff). This latter approximation
permits replacing the matrix elements ofS± by S or either of the two values ofSeff. Clearly
this latter approximation is better satisfied for sayS = 10 than forS = 2 but it remains the
case that the smaller spin value will exhibit limited quasi-periodic oscillations.

Finally it perhaps needs emphasizing that aneasy axisferromagnet (see Chudnovsky
1995) is quite different from itseasy planeequivalent. In particular there is no oscillatory
field dependence.
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